

SZPB9314A-B

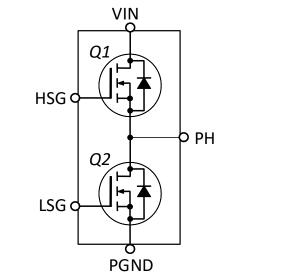
15 V, 25 A, HIGH PERFORMANCE HALF BRIDGE

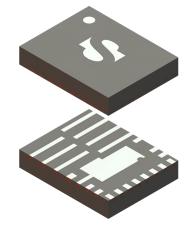
Features

- ZqFET[™] High Performance Technology
- Supports Switching Frequencies up to 2 MHz
- R_{DS(ON)4.5V} of 9 / 2.4 mΩ (Q1 / Q2)
- Extremely Low Gate Charge and Output Capacitance for Low Switching Losses
- QFN 5.1 mm x 4mm Thermally Enhanced Package

Applications

- Small, Efficient DC/DC Converters
- Battery Powered Electronics
- Power Blocks for Buck or Buck-Boost Converters


Product Description


The SZPB9314A-B is a compact, high efficiency half bridge optimized for high frequency applications. It contains Silanna's proprietary $ZqFET^{TM}$ in a half bridge configuration, capable of delivering 25 A of output current with a wide range of inputs up to 15 V.

Silanna's proprietary $ZqFET^{TM}$ technology offers industry's benchmark performance that reduces both switching and conduction losses for operation at switching frequencies up to 2 MHz.

The SZPB9314A-B has been optimally designed for operation as a half bridge for high frequency DC/DC buck converters. The device is fabricated in a standard silicon process. The $ZqFET^{TM}$ structure provides for extremely low, world class switching losses for a given on resistance rivalling devices fabricated in exotic processes.

The SZPB9314A-B is available in a space-saving and thermally enhanced QFN 5.1 mm x 4 mm package.

WARNING: These devices have limited built-in ESD protection. The leads should be shorted together with the device placed in conductive containers during storage or handling to prevent electrostatic damage to the Power ZqFET[®]'s MOS gates.

Device Overview

Contents

Features	1
Applications	1
Product Description	1
Pin Descriptions	3
Pin Definitions	3
Internal Block Diagram	4
Absolute Maximum Ratings	4
Thermal Information	5
Recommended Operating Conditions	5
Static Electrical Characteristics	6
Dynamic Electrical Characteristics	7
Product Ordering Information	8
Product Image	8
Package Dimensions	9
Recommended PCB Footprint	10
Revision History	11

Figures

Figure 1: Top Transparent View	3
Figure 2: Internal Block Diagram	4
Figure 3: SZPB9314A-B Product Image	8
Figure 4: F54 Package Dimensions	9
Figure 5: Recommended PCB Footprint .	10

Pin Descriptions

Figure 1: Top Transparent View

Pin Definitions

Pin #	Name	Description			
1-10	NC	No connect. May be used to connect to a large PCB pad area of VIN.			
11	VIN	Input voltage to Power Block, drain of Q1.			
12	LSG	Input connection to the gate of the low-side FET, Q2.			
13-15	PGND	Power ground connection to the source of the low-side FET, Q2.			
16-19	PH	Connections to the phase node of the half bridge, drain of low-side FET and source of the high-side FET.			
20	HSG	Input connection to the gate of the high-side FET, Q1.			
21-22	NC	No connect. May be used to connect to a large PCB pad area of VIN.			

Internal Block Diagram

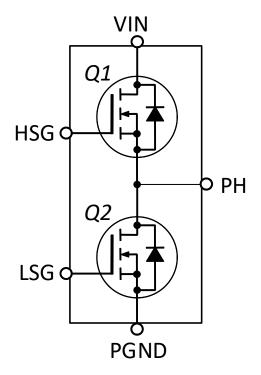


Figure 2: Internal Block Diagram

Absolute Maximum Ratings Note 1

(Ta = 25°C unless otherwise specified, relative to PGND.)

Parameter	Symbol	Device	Value	Units
Cate Source Veltage		Q1	9.0	V
Gate-Source Voltage	Vgs	Q2	9.0	v
VIN Voltage	Vvin		18.0	V
PH Voltage, DC	Vphase_dc		18.0	V
PH Voltage, AC (<10 ns)	Vphase_ac		25.0	V
DC Drain-Source Current	اط	Q1	20	
(Tj = 150 °C)	ld	Q2	25	A
Pulsed Drain Source Current (2)	Idm	Q1	30	
Pulsed Drain-Source Current ⁽²⁾	ldm	Q2	38	A
Operating Junction Temperature	Tj	BOTH	-40/+150	°C
Storage Temperature	Ts	BOTH	-50/+150	°C

Notes:

 These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to conditions greater than Recommended Operating Conditions will affect device reliability.

2) Pulse width ≤ 1 ms, duty cycle ≤ 2 %.

Thermal Information Note 1

Parameter	Symbol	Тур.	Units
Thermal Resistance Junction to Ambient	Reja	25.7	
Thermal Resistance Junction to Top of Package	Rejc(top)	8.7	
Thermal Resistance Junction to Board	Rөjb	4.8	°C/W
Thermal Characterization Parameter - Junction to top	Ψ_{JT}	0.2	
Thermal Characterization Parameter - Junction to board	Ψ_{JB}	4.8	

Notes:

1) Simulated on 2S2P JEDEC 51-7 board.

Recommended Operating Conditions

$(Ta = 25^{\circ}C \text{ unless otherwise specified.})$

Parameter	Symbol	Conditions	Max.	Units
VIN Operating Voltage ⁽¹⁾	Vvin	Insure any ringing on PH pins does not exceed Absolute Maximum ratings for PH pins.	15	V
Gate-Source Operating Voltage	Vgs	BOTI	H 5.5	V
Operating Frequency ⁽²⁾	Fsw		2	MHz
Operating Junction Temperature	TJ		-40/+125	°C

Notes:

1) Attention to proper VIN supply bypassing and tight PCB layout must be observed to keep the peak voltage of any ringing on the phase node, at the PH pins, below the **Error! Reference source not found.**above.

2) The device is very capable of switching at higher frequencies. Contact Silanna with your requirements so we can best ensure the highest reliability for the device in your applications at higher switching frequencies.

Static Electrical Characteristics

(Ta= 25°C Unless Otherwise Specified)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Units
Gate-Source Leakage	Gate-Source Leakage		Vds = 0 V, Vgs = +5.5 V		10	100	n A
Current	lgss	Vds = 0 V, Vgs = -5.5	V	-100	-10		nA
Gate-Source Threshold	\/th	Vac Vda Id 250 uA	Q1	0.85	0.97	1.15	V
Voltage	Vth Y	Vgs = Vds, Id = 250 µA	Q2	0.70	0.91	1.10	V
Drain-Source Breakdown	Budee		Q1	25			v
Voltage	Bvdss	Bvdss Vgs = 0V, Id = 250 μ A		25			V
Drain-Source Leakage	Ideo	Vds = 12.5 V, Vgs=0	Q1		125	1000	·• A
Current	ldss	Vds = 12.5 V, Vgs=0	Q2		400	2000	nA
Drain-Source On-State	D (12)	Vgs = 4.5 V, Id = 20 A	Q1		8.6	12	
Resistance (4.5 V)	Rds(on)4.5V ^(1,2)	Vgs = 4.5 V, Id = 25 A	Q2		2.4	3.6	mΩ

Notes:

1) Measured using pulse techniques – pulse width = 300 µs and duty cycle = 1% to minimize junction selfheating.

2) Measured using 4-wire (Kelvin) voltage sensing within 0.05" (2 mm) of the drain and source aggregate connections.

Dynamic Electrical Characteristics

(Ta= 25°C unless otherwise specified)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Units	
Coto Source Input Conceitores ⁽²⁾	Ciss	Vds = 12.5 V, Vgs = 0 V,	Q1		630	800	~F	
Gate-Source Input Capacitance ⁽²⁾	CISS	f = 1.0 MHz	Q2		2160	2400	рF	
Drain-Source Output	Coss	Vds = 12.5 V, Vgs = 0 V,	Q1		560	750	рF	
Capacitance ⁽²⁾	COSS	f = 1.0 MHz	Q2		2100	2400	μr	
Reverse Transfer (Drain-Gate)	Crss	Vds = 12.5 V, Vgs = 0 V,	Q1		13		ηE	
Capacitance	CISS	f = 1.0 MHz	Q2		47		рF	
Gate Resistance	Pa		Q1		0.4		Ω	
Gale Resistance	Rg		Q2		0.8		12	
Total Gate Charge (Vgs = 4.5 V)	Qg(4.5)	Vds = 12.5 V, Ids = 20 A	Q1		4.1	5	nC	
(2)		Vds = 12.5 V, Ids = 25 A	Q2		14.4	18	no	
Threshold Cate Charge ⁽¹⁾	Qg(th)	Vds = 12.5 V, Ids = 20 A	Q1		0.83		20	
Threshold Gate Charge ⁽¹⁾		Vds = 12.5 V, Ids = 25 A	Q2		2.98		nC	
Cata Source Charge	Oga	Vds = 12.5 V, Ids = 20 A	Q1		1.44		-	
Gate-Source Charge	Qgs	Vds = 12.5 V, Ids = 25 A	Q2		5.16		nC	
Coto Drain (Miller) Charge	Ord	Vds = 12.5 V, Ids = 20 A	Q1		0.46			
Gate-Drain (Miller) Charge	Qgd	Vds = 12.5 V, Ids = 25 A	Q2		1.64		nC	
Output Charge	0.000	Vds = 12.5 V, Ids = 20 A	Q1		8.3			
Output Charge	Qoss	Vds = 12.5 V, Ids = 25 A	Q2		29.7		nC	

Notes:

1) Qg(th) is defined as the gate charge value to the measured value of the gate-source threshold voltage, Vgs(th).

2) Guaranteed by characterization, not 100% production tested.

Product Ordering Information

SZPB9314A-BF54 15 V, 25 Amp Half Bridge in a 5.1 mm x 4 mm, 0.5 mm lead pitch, 22 lead QFN

Product Image

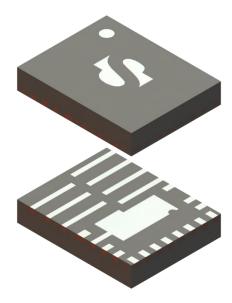
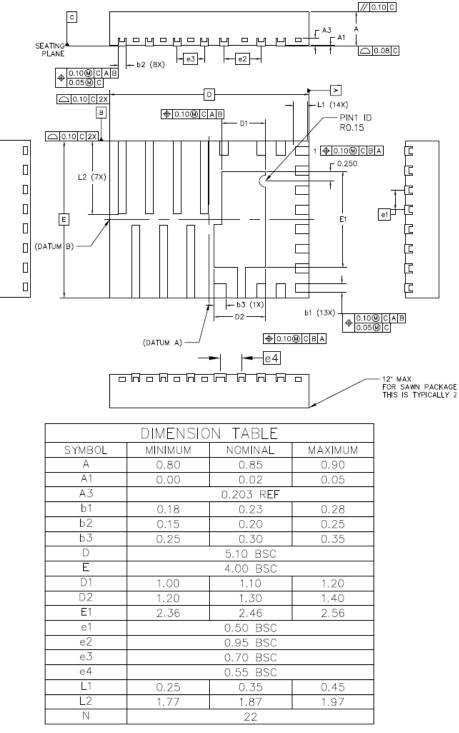



Figure 3: SZPB9314A-B Product Image

Package Dimensions

NOTE:

1. 2. 3. 4.

--Dimensioning and tolerancing conform to ASME Y14.5—2009 All dimensions are in millimeters N is the total number of terminals Unilateral coplanarity zone applies to the exposed pas as well as the terminals

Figure 4: F54 Package Dimensions

Recommended PCB Footprint

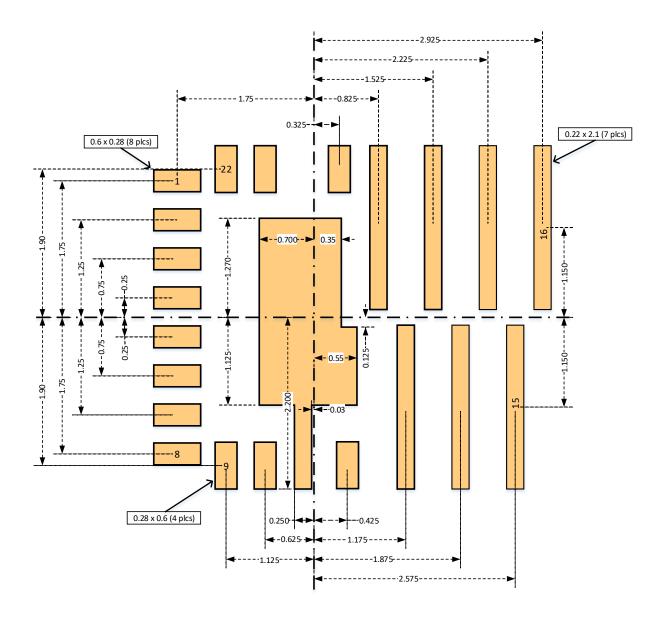


Figure 5: Recommended PCB Footprint

Revision History

Date	Revision	Notes	Author
June 18, 2018	1.0	Initial release	TW
October 7, 2018	2.0	Corrected figure 1. Updated Thermal Information, Static Electrical Characteristics, and Dynamic Electrical Characteristics. Final release.	TW
March 11, 2019	3.0	Update hyperlinks.	CR
June 20, 2019	4.0	Update header/footers and add the new logo.	CR

Silanna Semiconductor Proprietary and Confidential

Information furnished by Silanna Semiconductor is believed to be accurate and reliable. However, no responsibility is assumed for its use. Silanna Semiconductor makes no representation that the interconnection of its circuits as described herein will not infringe on existing patents rights.

4795 Eastgate Mall, Suite 100, San Diego, CA 92121 Toll Free: (888) 637-3564 | Fax: (858) 373-0437 | www.powerdensity.com

